Векторний витвір суми векторів. Векторний твір векторів заданих координатами

ЗМІШАНИЙ ВИРОБ ТРОХ ВЕКТОРІВ І ЙОГО ВЛАСТИВОСТІ

Змішаним творомтрьох векторів називають число, що дорівнює . позначається . Тут перші два вектори множаться векторно і потім отриманий вектор скалярно множиться на третій вектор . Очевидно, такий твір є кілька.

Розглянемо властивості змішаного твору.

  1. Геометричний сенсзмішаного твору. Змішаний твір 3-х векторів з точністю до знака дорівнює обсягу паралелепіпеда, побудованого цих векторах, як у ребрах, тобто. .

    Таким чином, і .

    Доказ. Відкладемо вектори від загального початку та побудуємо на них паралелепіпед. Позначимо і зауважимо, що . За визначенням скалярного твору

    Припускаючи, що і позначивши через hвисоту паралелепіпеда, знаходимо .

    Таким чином, при

    Якщо ж, то й. Отже, .

    Об'єднуючи обидва ці випадки, отримуємо або .

    З підтвердження цієї якості зокрема випливає, що й трійка векторів права, то змішане твір , і якщо – ліва, то .

  2. Для будь-яких векторів , , справедлива рівність

    Доказ цієї властивості випливає з властивості 1. Справді, легко показати, що . До того ж знаки "+" і "-" беруться одночасно, т.к. кути між векторами та і одночасно гострі або тупі.

  3. При перестановці будь-яких двох співмножників змішаний твір змінює знак.

    Справді, якщо розглянемо змішаний твір, то, наприклад, або

  4. Змішаний твір тоді і тільки тоді, коли один із співмножників дорівнює нулю або вектори – компланарні.

    Доказ.

    Т.ч., необхідною та достатньою умовою компланарності 3-х векторів є рівність нулю їх змішаного твору. Крім того, звідси випливає, що три вектори утворюють базис у просторі, якщо .

    Якщо вектори задані в координатній формі , то можна показати, що їхнє змішане твір знаходиться за формулою:

    .

    Т. о., змішане твір дорівнює визначнику третього порядку, у якого у першому рядку стоять координати першого вектора, у другому рядку – координати другого вектора та у третьому рядку – третього вектора.

    приклади.

АНАЛІТИЧНА ГЕОМЕТРІЯ У ПРОСТОРІ

Рівняння F(x, y, z)= 0 визначає у просторі Oxyzдеяку поверхню, тобто. геометричне місце точок, координати яких x, y, zзадовольняють цього рівняння. Це рівняння називається рівнянням поверхні, а x, y, z- поточними координатами.

Однак, часто поверхня задається не рівнянням, а як безліч точок простору, що мають ту чи іншу властивість. І тут потрібно знайти рівняння поверхні, з її геометричних властивостей.


ПЛОЩІСТЬ.

НОРМАЛЬНИЙ ВЕКТОР ПЛОЩИНИ.

РІВНЯННЯ ПЛОСКОСТІ, ЩО ПРОХОДИТЬ ЧЕРЕЗ ДАНУ ТОЧКУ

Розглянемо у просторі довільну площинуσ. Її положення визначається завданням вектора , перпендикулярного цій площині, та деякої фіксованої точки M 0(x 0, y 0, z 0), що лежить у площині σ.

Вектор перпендикулярний площині σ називається нормальнимвектор цієї площини. Нехай вектор має координати.

Виведемо рівняння площини σ, що проходить через цю точку M 0і має нормальний вектор. Для цього візьмемо на площині σ довільну точку M(x, y, z)і розглянемо вектор.

Для будь-якої точки MÎ σ вектор .Тому їх скалярний твір дорівнює нулю. Ця рівність – умова того, що точка MÎ σ. Воно справедливе для всіх точок цієї площини і порушується, як тільки точка Mопиниться поза площиною σ.

Якщо позначити через радіус-вектор точки M, – радіус-вектор точки M 0, то й рівняння можна записати у вигляді

Це рівняння називається векторнимрівнянням площини. Запишемо його у координатній формі. Оскільки , то

Отже, ми отримали рівняння площини, що проходить цю точку. Таким чином, для того, щоб скласти рівняння площини, потрібно знати координати нормального вектора та координати деякої точки, що лежить на площині.

Зауважимо, що рівняння площини є рівнянням 1-го ступеня щодо поточних координат x, yі z.

приклади.

ЗАГАЛЬНЕ РІВНЯННЯ ПЛОСКОСТІ

Можна показати, що будь-яке рівняння першого ступеня щодо декартових координат x, y, zє рівнянням деякої площини. Це рівняння записується як:

Ax+By+Cz+D=0

і називається загальним рівняннямплощині, причому координати A, B, Cтут є координати нормального вектора площини.

Розглянемо окремі випадки загального рівняння. З'ясуємо, як розташовується площина щодо системи координат, якщо один або кілька коефіцієнтів рівняння звертаються до нуля.

A – це довжина відрізка, що відсікається площиною на осі Ox. Аналогічно, можна показати, що bі c- Довжини відрізків, що відсікаються площиною на осях, що розглядається. Ойі Oz.

Рівнянням площини у відрізках зручно користуватися для побудови площин.

Перед тим, як дати поняття векторного твору, звернемося до питання орієнтації впорядкованої трійки векторів a → , b → , c → у тривимірному просторі.

Відкладемо спочатку вектори a → , b → , c → від однієї точки. Орієнтація трійки a → , b → , c → буває правою чи лівою, залежно від напрямку самого вектора c → . Від того, в яку сторону здійснюється найкоротший поворот від вектора a → до b → з кінця вектора c → буде визначено вид трійки a → , b → , c → .

Якщо найкоротший поворот здійснюється проти годинникової стрілки, то трійка векторів a → , b → , c → називається правою, якщо за годинниковою стрілкою – лівий.

Далі візьмемо два не колінеарні вектори a → і b → . Відкладемо потім від точки A вектори AB → = a → і A C → = b → . Побудуємо вектор A D → = c → , який перпендикулярний одночасно і A B → і A C → . Таким чином, при побудові самого вектора A D → = c → ми можемо надійти подвійно, задавши йому або один напрямок, або протилежний (дивіться ілюстрацію).

Впорядкована трійка векторів a → , b → , c → може бути, як ми з'ясували правою чи лівою залежно від напрямку вектора.

Зі сказаного вище можемо ввести визначення векторного твору. Це визначення дається для двох векторів, визначених у прямокутній системі координат тривимірного простору.

Визначення 1

Векторним твором двох векторів a → та b → називатимемо такий вектор заданий у прямокутній системі координат тривимірного простору такий, що:

  • якщо вектори a → та b → колінеарні, він буде нульовим;
  • він буде перпендикулярний і вектору a → та вектору b → тобто. ∠ a → c → ∠ b → c → = π 2 ;
  • його довжина визначається за формулою: c → = a → · b → · sin ∠ a → , b →;
  • трійка векторів a → , b → , c → має таку саму орієнтацію, як і задана система координат.

Векторний витвірвекторів a → та b → має таке позначення: a → × b → .

Координати векторного твору

Оскільки будь-який вектор має певні координати в системі координат, можна ввести друге визначення векторного твору, яке дозволить знаходити його координати за заданими координатами векторів.

Визначення 2

У прямокутній системі координат тривимірного простору векторним твором двох векторів a → = (a x ; a y ; a z) і b → = (b x ; b y ; b z) називають вектор c → = a → × b → = (ay · bz - az · by) · i → + (az · bx - ax · bz) · j → + (ax · by - ay · bx) · k → , де i → j → k → є координатними векторами.

Векторний твір можна представити як визначник квадратної матриці третього порядку, де перший рядок є вектори орти i → , j → , k → , другий рядок містить координати вектора a → , а третій – координати вектора b → у заданій прямокутній системі координат, даний визначник матриці виглядає так: c → = a → × b → = i → j → k → axayazbxbybz

Розклавши даний визначник за елементами першого рядка, отримаємо рівність: j → k → axayazbxbybz = ayazbybz · i → - axazbxbz · j → + axaybxby · k → = = a → × b → = (ay · bz - az · by) · i → + (az · bx - ax · bz) · j → + (ax · by - ay · bx) · k →

Властивості векторного твору

Відомо, що векторний твір в координатах представляється як визначник матриці c → = a → × b → = i → властивостей визначника матрицівиводяться такі властивості векторного твору:

  1. антикомутативність a → × b → = - b → × a →;
  2. дистрибутивність a (1) → + a (2) → × b = a (1) → × b → + a (2) → × b → або a → × b (1) → + b (2) → = a → × b (1) → + a → × b (2) → ;
  3. асоціативність λ · a → × b → = λ · a → × b → або a → × (λ · b →) = λ · a → × b → , де λ - довільне дійсне число.

Ці властивості мають не складні докази.

Наприклад, можемо довести властивість антикомутативності векторного твору.

Доказ антикомутативності

За визначенням a → x b → = i → j → k → a x a y z b x b y b z і b → x a → = i → j → k → b x b y b z a x a y a z . А якщо два рядки матриці переставити місцями, то значення визначника матриці має змінюватися на протилежне, отже, a → x b → = i → j → k → axayazbxbybz = - i → j → k → bxbybzaxayaz = - b → × a → та доводить антикомутативність векторного твору.

Векторний твір – приклади та рішення

Найчастіше зустрічаються три типи завдань.

У задачах першого типу зазвичай задані довжини двох векторів та кут між ними, а потрібно знайти довжину векторного твору. У цьому випадку користуються наступною формулою c → a → b → sin ∠ a → , b → .

Приклад 1

Знайдіть довжину векторного добутку векторів a → та b → , якщо відомо a → = 3 , b → = 5 , ∠ a → , b → = π 4 .

Рішення

За допомогою визначення довжини векторного твору векторів a → та b → розв'яжемо дану задачу: a → × b → = a → · b → · sin ∠ a → , b → = 3 · 5 · sin π 4 = 15 2 2 .

Відповідь: 15 2 2 .

Завдання другого типу мають зв'язок із координатами векторів, у яких векторний твір, його довжина тощо. шукаються через відомі координати заданих векторів a → = (a x ; a y ; a z) і b → = (b x ; b y ; b z) .

Для такого типу завдань можна вирішити масу варіантів завдань. Наприклад, можуть бути задані не координати векторів a → і b → , які розкладання по координатним векторам виду b → = b x · i → + b y · j → + b z · k → і c → = a → × b → = (ay · bz - az · by) · i → + (az · bx - ax · bz) · j → вектори a → та b → можуть бути задані координатами точок їх початку та кінця.

Розглянемо такі приклади.

Приклад 2

У прямокутній системі координат задані два вектори a → = (2; 1; - 3), b → = (0; - 1; 1). Знайдіть їхній векторний твір.

Рішення

За другим визначенням знайдемо векторний добуток двох векторів у заданих координатах: a → × b → = (ay · bz - az · by) · i → + (az · bx - ax · bz) · j → + (ax · by - ay · bx) · k → = = (1 · 1 - (- 3) · (- 1)) · i → + ((- 3) · 0 - 2 · 1) · j → + (2 · (- 1) - 1 · 0) · k → = = - 2 i → - 2 j → - 2 k → .

Якщо записати векторний твір через визначник матриці, то рішення даного прикладу виглядає наступним чином: a → x b → = i → j → k → axayazbxbybz = i → j → k → 2 1 - 3 0 - 1 1 = - 2 i → - 2 j → - 2 k → .

Відповідь: a → × b → = - 2 i → - 2 j → - 2 k → .

Приклад 3

Знайдіть довжину векторного добутку векторів i → - j → та i → + j → + k → , де i → , j → , k → - орти прямокутної декартової системи координат.

Рішення

Для початку знайдемо координати заданого векторного твору i → - j → × i → + j → + k → у цій прямокутній системі координат.

Відомо, що вектори i → - j → і i → + j → + k → мають координати (1; - 1; 0) і (1; 1; 1) відповідно. Знайдемо довжину векторного твору за допомогою визначника матриці, тоді маємо i → - j → × i → + j → + k → = i → j → k → 1 - 1 0 1 1 1 = - i → - j → + 2 k → .

Отже, векторний твір i → - j → × i → + j → + k → має координати (-1; - 1; 2) у заданій системі координат.

Довжину векторного твору знайдемо за формулою (див. розділ довжини вектора): i → - j → × i → + j → + k → = - 1 2 + - 1 2 + 2 2 = 6 .

Відповідь: i → - j → × i → + j → + k → = 6 . .

Приклад 4

У прямокутній декартовій системі координат задані координати трьох точок A (1, 0, 1), B (0, 2, 3), C (1, 4, 2). Знайдіть якийсь вектор, перпендикулярний A B → і A C → одночасно.

Рішення

Вектори A B → і A C → мають наступні координати (- 1 ; 2 ; 2) та (0 ; 4 ; 1) відповідно. Знайшовши векторний добуток векторів A B → і A C → , очевидно, що він є перпендикулярним вектором за визначенням і до A B → , і до A C → , тобто є рішенням нашої задачі. Знайдемо його A B → × A C → = i → j → k → - 1 2 2 0 4 1 = - 6 i → + j → - 4 k → .

Відповідь: - 6 i → + j → - 4 k → . - один із перпендикулярних векторів.

Завдання третього типу орієнтовані використання властивостей векторного твору векторів. Після застосування яких будемо отримувати рішення заданого завдання.

Приклад 5

Вектори a → та b → перпендикулярні та їх довжини рівні відповідно 3 та 4 . Знайдіть довжину векторного твору 3 · a → - b → × a → - 2 · b → = 3 · a → × a → - 2 · b → + - b → × a → - 2 · b → = = 3 · a → × a → + 3 · a → × - 2 · b → + - b → × a → + - b → × - 2 · b → .

Рішення

За властивістю дистрибутивності векторного твору ми можемо записати 3 · a → - b → × a → - 2 · b → = 3 · a → × a → - 2 · b → + - b → × a → - 2 · b → = = 3 · a → × a → + 3 · a → × - 2 · b → + - b → × a → + - b → × - 2 · b →

За властивістю асоціативності винесемо числові коефіцієнти за знак векторних творів в останньому виразі: 3 · a → × a → +3 · a → = 3 · a → × a → + 3 · (- 2) · a → × b → + (- 1) · b → × a → + (- 1) · (- 2) · b → × b → = = 3 · a → × a → - 6 · a → × b → - b → × a → + 2 · b → × b →

Векторні твори a → × a → і b → × b → рівні 0, оскільки a → × a → = a → · a → · sin 0 = 0 і b → × b → = b → · b → 0 , тоді 3 · a → × a → - 6 · a → × b → - b → ? .

З антикомутативності векторного твору випливає - 6 · a → × b → - b → × a → = - 6 · a → × b → - (- 1) · a → × b → = - 5 · a → × b → . .

Скориставшись властивостями векторного твору, отримуємо рівність 3 · a → - b → × a → - 2 · b → = = - 5 · a → × b → .

За умовами вектори a → та b → перпендикулярні, тобто кут між ними дорівнює π 2 . Тепер залишається лише підставити знайдені значення у відповідні формули: 3 · a → - b → ? → · sin (a → , b →) = 5 · 3 · 4 · sin π 2 = 60 .

Відповідь: 3 · a → - b → × a → - 2 · b → = 60 .

Довжина векторного твору векторів за орпеділенням дорівнює a → × b → = a → · b → · sin ∠ a → , b → . Бо вже відомо (з шкільного курсу), що площа трикутника дорівнює половині добутку довжин двох його сторін, помножене на синус кута між цими сторонами. Отже, довжина векторного добутку дорівнює площі паралелограма - подвоєного трикутника, а саме добутку сторін у вигляді векторів a → і b → відкладені від однієї точки на синус кута між ними sin ∠ a → , b → .

Це і є геометричний сенс векторного твору.

Фізичний сенс векторного твору

У механіці, одному з розділів фізики завдяки векторному твору можна визначити момент сили щодо точки простору.

Визначення 3

Під моментом сили F → ​​, прикладеної до точки B , щодо точки A розумітимемо наступний векторний твір A B → × F → .

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Визначення. Векторним твором вектора а (множинне) на колінеарний йому вектор (множник) називається третій вектор з (твір), який будується наступним чином:

1) його модуль чисельно дорівнює площіпаралелограма на рис. 155), побудованого на векторах тобто він дорівнює напрям перпендикулярно площині згаданого паралелограма;

3) при цьому напрям вектора з вибирається (з двох можливих) так, щоб вектори складали праву систему (§ 110).

Позначення: або

Доповнення до визначення. Якщо вектори колінеарні, то фігурі вважаючи її (умовно) паралелограмом, звичайно приписати нульову площу. Тому векторний добуток колінеарних векторів вважається рівним нуль-вектору.

Оскільки нуль-вектору можна приписати будь-який напрямок, ця угода не суперечить пунктам 2 та 3 визначення.

Зауваження 1. У терміні «векторний твір» перше слово вказує на те, що результат дії є вектором (на противагу скалярному твору; порівн. § 104, зауваження 1).

Приклад 1. Знайти векторний твір, де основні вектори правої системи координат (рис. 156).

1. Оскільки довжини основних векторів дорівнюють одиниці масштабу, то площа паралелограма (квадрату) чисельно дорівнює одиниці. Отже, модуль векторного добутку дорівнює одиниці.

2. Оскільки перпендикуляр до площини є ось, то шуканий векторний твір є вектор, колінеарний вектору до; бо обидва вони мають модуль 1, то шуканий векторний добуток дорівнює або k, або -k.

3. З цих двох можливих векторів треба вибрати перший, тому що вектори утворюють праву систему (а вектори ліву).

Приклад 2. Знайти векторний твір

Рішення. Як приклад 1, укладаємо, що вектор дорівнює або k, або -k. Але тепер треба вибрати -k, тому що вектори утворюють праву систему (а вектори ліву). Отже,

Приклад 3. Вектори мають довжини відповідно рівні 80 і 50 см, і утворюють кут 30°. Взявши за одиницю довжини метр, знайти довжину векторного твору

Рішення. Площа паралелограма, побудованого на векторах дорівнює Довжина шуканого векторного твору дорівнює

Приклад 4. Знайти довжину векторного твору тих самих векторів, взявши за одиницю довжини сантиметр.

Рішення. Оскільки площа паралелограма, побудованого векторах дорівнює то довжина векторного добутку дорівнює 2000 див, тобто.

З порівняння прикладів 3 і 4 видно, що довжина вектора залежить як від довжин сомножителей але і від вибору одиниці довжини.

Фізичний сенс векторного твору.З численних фізичних величин, що зображуються векторним твором, розглянемо лише момент сили.

Нехай А є точка докладання сили Моментом сили щодо точки О називається векторний твір Оскільки модуль цього векторного твору чисельно дорівнює площі паралелограма (рис. 157), то модуль моменту дорівнює добутку підстави на висоту, тобто силі, помноженій на відстань від точки О до прямої, вздовж якої діє сила.

У механіці доводиться, що з рівноваги твердого тіла необхідно, щоб дорівнювала нулю як сума векторів , які мають сили, прикладені до тіла, але й сума моментів сил. У тому випадку, коли всі сили паралельні одній площині, складання векторів, що представляють моменти, можна замінити додаванням та відніманням їх модулів. Але за довільних напрямів сил така заміна неможлива. Відповідно до цього векторний твір визначається саме як вектор, а не як число.


7.1. Визначення векторного твору

Три некомпланарних вектори a, b і с, взяті в зазначеному порядку, утворюють праву трійку, якщо з кінця третього вектора з найкоротший поворот від першого вектора а до другого вектора b видно таким, що відбувається проти годинникової стрілки, і ліву, якщо за годинниковою (див. рис. 16).

Векторним добутком вектора на вектор b називається вектор з , який:

1. Перпендикулярний векторам a і b , тобто с ^ а і с ^ b;

2. Має довжину, чисельно рівну площі паралелограма, побудованого на векторах а іbяк на сторонах (див. рис. 17), тобто.

3. Вектори a, b і з утворюють праву трійку.

Векторний твір позначається а х b або [а, b]. З визначення векторного твору безпосередньо випливають наступні співвідношення між ортами i , jі k(Див. мал. 18):

i x j = k , j x k = i , k x i = j .
Доведемо, наприклад, що i хj = k.

1) k ^ i, k ^ j;

2) |k |=1, але | i x j| = | i | |J | sin(90°)=1;

3) вектори i, j та kутворюють праву трійку (див. мал. 16).

7.2. Властивості векторного твору

1. При перестановці сомножителей векторне твір змінює знак, тобто. а хb = (b хa) (див. рис. 19).

Вектори а хb і b ха колінеарні, мають однакові модулі (площа паралелограма залишається незмінною), але протилежно спрямовані (трійки а, b, а хb і a, b, b x a протилежної орієнтації). Стало бути a xb = -(b xa).

2. Векторний добуток має поєднану властивість щодо скалярного множника, тобто l (а хb) = (l а) х b = а х (l b).

Нехай l>0. Вектор l (а хb) перпендикулярний векторам а і b. Вектор ( lа) х bтакож перпендикулярний векторам а і b(Вектори а, lа лежать у одній площині). Значить, вектори l(а хb) та ( lа) х bколінеарні. Очевидно, що й напрямки їх збігаються. Мають однакову довжину:

Тому l(a хb) = lа хb. Аналогічно доводиться при l<0.

3. Два ненульові вектори а і bколінеарні тоді й тільки тоді, коли їхній векторний твір дорівнює нульовому вектору, тобто а ||b<=>а хb = 0.

Зокрема, i * i = j * j = k * k = 0 .

4. Векторний твір має розподільну властивість:

(a +b)хс = а хс + bхс.

Приймемо без підтвердження.

7.3. Вираз векторного твору через координати

Ми використовуватимемо таблицю векторного твору векторів i , jі k:

якщо напрямок найкоротшого шляху від першого вектора до другого збігається з напрямком стрілки, то твір дорівнює третьому вектору, а то й збігається - третій вектор береться зі знаком «мінус».

Нехай задані два вектори а = а х i + a y j+a z kі b = b x i+b y j+b z k. Знайдемо векторний твір цих векторів, перемножуючи їх як багаточлени (згідно з властивостями векторного твору):



Отриману формулу можна записати ще коротше:

оскільки права частина рівності (7.1) відповідає розкладу визначника третього порядку за елементами першого рядка.Рівність (7.2) легко запам'ятовується.

7.4. Деякі програми векторного твору

Встановлення колінеарності векторів

Знаходження площі паралелограма та трикутника

Відповідно до визначення векторного твору векторів аі b |а хb | =|а | * | b | sin g , т. е. S пар = | а x b |. І, отже, D S = 1/2 | а х b |

Визначення моменту сили щодо точки

Нехай у точці А прикладена сила F =АВі нехай Про- Деяка точка простору (див. мал. 20).

З фізики відомо, що моментом сили F щодо точки Проназивається вектор М,який проходить через точку Прота:

1) перпендикулярний площині, що проходить через точки О, А, В;

2) чисельно дорівнює добутку сили на плече

3) утворює праву трійку з векторами ОА та АВ.

Отже, М = ОА х F .

Знаходження лінійної швидкості обертання

Швидкість vточки М твердого тіла, що обертається з кутовою швидкістю wнавколо нерухомої осі визначається формулою Ейлера v = w хr , де r = ОМ , де О-деяка нерухома точка осі (див. рис. 21).

Цей онлайн калькулятор визначає векторний добуток векторів. Надається докладне рішення. Для обчислення векторного добутку векторів введіть координати векторів у комірки та натисніть на кнопку "Обчислити."

×

Попередження

Очистити всі осередки?

Закрити Очистити

Інструкція щодо введення даних.Числа вводяться як цілих чисел (приклади: 487, 5, -7623 тощо.), десяткових чисел (напр. 67., 102.54 тощо.) чи дробів. Дроб треба набирати у вигляді a/b, де a і b (b>0) цілі або десяткові числа. Приклади 45/5, 6.6/76.4, -7/6.7 тощо.

Векторний витвір векторів

Перш ніж перейти до визначення векторного твору векторів, розглянемо поняття впорядкована трійка векторів, ліва трійка векторів, права трійка векторів.

Визначення 1. Три вектори називаються упорядкованої трійкою(або трійкою ), якщо зазначено, який із цих векторів перший, який другий та який третій.

Запис cba- означає - першим є вектор c, другим є вектор bі третім є вектор a.

Визначення 2. Трійка некомпланарних векторів abcназивається правою (лівою), якщо при приведенні до загального початку ці вектори розташовуються так, як розташовані відповідно великий, незігнутий вказівний і середній пальці правої (лівої) руки.

Визначення 2 можна формулювати інакше.

Визначення 2". Трійка некомпланарних векторів abcназивається правою (лівою), якщо при приведенні до загального початку, вектор cрозташовується по той бік від площини, що визначається векторами aі b, звідки найкоротший поворот від aдо bвідбувається проти годинникової стрілки (за годинниковою стрілкою).

Трійка векторів abc, зображена на мал. 1 є правою, а трійка abcзображена на рис. 2 є лівою.

Якщо дві трійки векторів є правими чи лівими, кажуть, що вони однієї орієнтації. Інакше кажуть, що вони є протилежною орієнтацією.

Визначення 3. Декартова або афінна система координат називається правою (лівою), якщо три базисні вектори утворюють праву (ліву) трійку.

Для певності, надалі ми розглядатимемо лише праві системи координат.

Визначення 4. Векторним творомвектора aна вектор bназивається вектор з, що позначається символом c=[ab] (або c=[a,b], або c=a×b) і задовольняє наступним трьом вимогам:

  • довжина вектора здорівнює добутку довжин векторів aі bна синус кута φ між ними:
  • |c|=|[ab]|=|a||b|sinφ; (1)
  • вектор зортогональний до кожного з векторів aі b;
  • вектор cспрямований так, що трійка abcє правою.

Векторний твір векторів має такі властивості:

  • [ab]=−[ba] (антиперестановністьспівмножників);
  • [(λa)b]=λ [ab] (сполучністьщодо числового множника);
  • [(a+b)c]=[ac]+[bc] (розподільністьщодо суми векторів);
  • [aa]=0 для будь-якого вектора a.

Геометричні властивості векторного твору

Теорема 1. Для колінеарності двох векторів потрібна і досить рівність нулю їхнього векторного твору.

Доказ. Необхідність. Нехай вектори aі bколінеарні. Тоді кут між ними 0 або 180° sinφ=sin180=sin 0 = 0. Отже, враховуючи вираз (1), довжина вектора cдорівнює нулю. Тоді cнульовий вектор.

Достатність. Нехай векторний добуток векторів aі bнавно нулю: [ ab]=0. Доведемо, що вектори aі bколінеарні. Якщо хоча б один із векторів aі bнульовий, то ці вектори колінеарні (т.к. нульовий вектор має невизначений напрямок і його можна вважати колінеарним будь-якому вектору).

Якщо ж обидва вектори aі bненульові, то | a|>0, |b|>0. Тоді з [ ab]=0 і з (1) випливає, що sinφ=0. Отже вектори aі bколінеарні.

Теорему доведено.

Теорема 2. Довжина (модуль) векторного твору ab] дорівнює площі Sпаралелограма, побудованого на наведених до загального початку векторах aі b.

Доказ. Як відомо, площа паралелограма дорівнює добутку суміжних сторін цього паралелограма на синус кута між ними. Отже:

Тоді векторний добуток цих векторів має вигляд:

Розкриваючи визначник за елементами першого рядка, ми отримаємо розкладання вектора. a×bпо базису i, j, k, Яке еквівалентне формулі (3).

Доказ теореми 3. Складемо всі можливі пари з базових векторів i, j, kі порахуємо їхній векторний твір. Потрібно враховувати, що базисні вектори взаємно ортогональні, утворюють праву трійку і мають одиничну довжину (іншими словами можна припускати, що i={1, 0, 0}, j={0, 1, 0}, k= (0, 0, 1)). Тоді маємо:

З останньої рівності та співвідношень (4), отримаємо:

Складемо 3×3 матрицю, перший рядок якої базисні вектори i, j, k,а інші рядки заповнені елементами векторів aі b:

Таким чином, результатом векторного твору векторів aі bбуде вектор:

.

Приклад 2. Знайти векторне твір векторів [ ab], де вектор aпредставлений двома точками. Початкова точка вектора: , кінцева точка вектора a: , вектор bмає вигляд .

Розв'язання. Перемістимо перший вектор на початок координат. Для цього віднімемо з відповідних координат кінцевої точки координати початкової точки:

Обчислимо визначник цієї матриці, розклавши її по першому рядку. Результатом цих обчислень отримаємо векторний добуток векторів aі b.

 
Статті потемі:
Асоціація Саморегулівна організація «Брянське Регіональне Об'єднання Проектувальників Зміни у ФЗ 340 від 03
Минулого тижня ми за допомогою нашого пітерського експерта про новий Федеральний закон № 340-ФЗ від 3 серпня 2018 року "Про внесення змін до Містобудівного кодексу Російської Федерації та окремі законодавчі акти Російської Федерації". Акцент був з
Хто розраховує заборгованість із аліментів?
Аліментна заборгованість - це сума, що утворюється внаслідок відсутності грошових виплат за аліментами з боку зобов'язаної особи або часткових виплат за певний період. Цей період часу може тривати максимально: До настання
Довідка про доходи, витрати, про майно державного службовця
Довідка про доходи, витрати, про майно та зобов'язання майнового характеру – це документ, який заповнюється та подається особами, які претендують або заміщають посади, здійснення повноважень за якими передбачає безумовний обов'язок
Поняття та види нормативних правових актів
Нормативно-правові акти – це корпус документів, який регулює правовідносини у всіх сферах діяльності. Це система джерел права. До неї входять кодекси, закони, розпорядження федеральних та місцевих органів влади і т. д. Залежно від виду